Minimizing Discrete Convex Functions with Linear Inequality Constraints

نویسندگان

  • Satoru FUJISHIGE
  • Takumi HAYASHI
  • Kiyohito NAGANO
چکیده

A class of discrete convex functions that can efficiently be minimized has been considered by Murota. Among them are L\-convex functions, which are natural extensions of submodular set functions. We first consider the problem of minimizing an L\-convex function with a linear inequality constraint having a positive normal vector. We propose a polynomial algorithm to solve it based on a binary search for an optimal Lagrange multiplier, where use is made of algorithms for minimum-ratio and maximum-ratio problems that are, respectively, associated with submodular and supermodular set functions. We also examine an extension of the problem to that with a linear inequality constraint having a not necessarily positive normal vector and adapt it to the problem of minimizing an M\-convex function, the convex conjugate of an L\-convex function, with a linear inequality constraint. The former extension can be solved in polynomial time by using a binary search for an optimal Lagrange multiplier and by adopting Nagano’s algorithm for the intersection of line and a base polyhedron. The latter can also be solved in polynomial time by an approach similar to that for L\-convex functions, based on a geometric characterization of M\-convex functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints

In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...

متن کامل

A Primal - Dual Trust - Region Algorithm for Minimizing aNon - convex Function Subject to General Inequality and LinearEquality

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Preliminary numerical results are presented.

متن کامل

A Primal-dual Trust-region Algorithm for Minimizing a Non-convex Function Subject to General Inequality and Linear Equality Constraints a Primal-dual Trust-region Algorithm for Non-convex Constrained Minimization

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Preliminary numerical results are presented.

متن کامل

Bounding Duality Gap for Problems with Separable Objective

We consider the problem of minimizing a sum of non-convex functions over a compact domain, subject to linear inequality and equality constraints. Approximate solutions can be found by solving a convexified version of the problem, in which each function in the objective is replaced by its convex envelope. We propose a randomized algorithm to solve the convexified problem which finds an -suboptim...

متن کامل

Bounding the Duality Gap for Problems with Separable Objective

We consider the problem of minimizing a sum of non-convex functions over a compact domain, subject to linear inequality and equality constraints. We consider approximate solutions obtained by solving a convexified problem, in which each function in the objective is replaced by its convex envelope. We propose a randomized algorithm to solve the convexified problem which finds an -suboptimal solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008